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Summary—Chevyshev’s procedure for determining equal-ripple
rational functions with preassigned poles is extended to functions
with double-valued singularities. As long as the number of elements
is small; design equations for the class of transmission-line filters
consisting of shunt-resonant elements spaced a quarter wavelength
apart are readily obtained by identifying the unknown coefficients
with those of the desired equal-ripple function. This is carried out
in some detail for three and four element filters and applied to the
design of broad-band stub supports and quarter-wave-spaced broad-
band TR tubes. Experimental confirmation is presented.

INTRODUCTION

HE GENERAL SYNTHESIS of transmission-
Tline filters consisting of short-circuited, quarter-

wave stubs spaced a quarter-wavelength apart on
sections of transmission line, each of undetermined char-
acteristic impedance, has been considered by Jones.! He
has shown that the insertion loss function P, of a sym-
metrical filter of this type will take the form P,=1
+Qn1Xw) /(1 +w?)?, where Q.1 is an even or odd poly-
nomial of degree n+1 in w with real coefficients and # is
the number of quarter-wavelength sections of transmis-
sion line. He also pointed out how equal-ripple perform-
ance can be achieved {or arbitrary bandwidth and toler-
ance by means of an ingenious potential analogy used by
Grinich? and Bennett? for this purpose. This transforma-
tion is rather involved with the result that Jones limited
has calculations of the coefficients of Q,1(w) to a single
bandwidth.

The general case treated by Jones is of considerable
interest because it includes the problem of the design of
optimum broad-band stubs,*® broad-band TR tubes®
and some specialized filters.”?
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THE PROBLEM AND SOLUTION

Now w= —cot 6, where 6 is the common electrical
length of the stubs and line lengths in the filter under
consideration, i.e., § =2wl/A,. If one uses x= —cos f for
a frequency variable instead of w, it is readily shown by
means of the substitution, w?=cot? 6 =cos?8/(1 —cos?§)
= x*(1 — x2) that P = 1 -+ P,%(x)/(1 — x?), where
P,41(x) is an even or odd polynomial in x of degree n+1
with real coefficients.

Thus the problem of designing for equal-ripple per-
formance reduces to finding even and odd polynomials
P.(x) so that P.(x)/+/1—x% oscillates between +1
exactly #-+1 times in a prescribed interval —1< —x,
<x<x, <1,

In general, this problem may be solved either by use
of the transformation employed by Grinich? and Ben-
nett® or by adding that constant to the appropriate
rational Chebyshev function'® which converts it into a
perfect square. Both of these procedures determine
P,(x) by first determining P,2(x). As is shown in the
Appendix, the “primitive” equal-ripple rational func-
tions employed by Chebyshev in the solution of his
problem may be expressed in terms of more primitive,
irrational functions. These are used to solve the problem
directly. Finally P,(x)' is given then by

2P (%) = (1 + /1 — 2T (/%)
— (1 = V1 =2 Tha(a/x0), (1)

where T,(x) is the familiar Chebyshev polynomial of
nth degree.

Although a general proof is given in the Appendix,
the reader may wish to verify that P,(x),/+/1—x? equals
+1 when x=x, equals +1 for x= —x, and equals 0 or
+1 for x=0, depending on the precise value of #.

This solution of the approximation problem in closed
form permits the exact determination of the optimum
performance available from this class of transmission-
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line filter and so permits the filter designer to select with-
out approximation the number of filter elements re-
quired to achieve a specified selectivity for a given pass-
band width and tolerance. It also allows the direct de-
termination of the design parameters of a number of
useful microwave devices by the method of undeter-
mined coefficients if the number of unknowns is small.
Of course, in the general case, the synthesis procedure
of Jones! is available.

Using the frequency variable x instead of w not only
simplifies the problem but also simplifies the solution.
In terms of w, (1) would involve all the Chebyshev poly-
nomials of the form T,_s(w). That the denominator of
Py, expressed in terms of x, is independent of the num-
ber of filter sections is associated with the fact that only
one stub is required to make the problem determinant.
Additional stubs result in more unknown impedances
than the number of independent coefficients in Pj.
Moreover, if P,.1(x) is divisible by x*—1, then no shunt
elements are required in the realization.!? This situation
illustrates the fact that the approximation problem is
most readily discussed in terms of x.

On the other hand, the {requency variable w is very
useful for synthesis realizability considerations. Because
of the multivalued relationship between w and x, x can-
not be used conveniently as the frequency variable in
a synthesis procedure based on positive realness in the
sense of Brune.!* For this reason the writer prefers to
carry the analysis of a given problem through in terms
of both cos # and sin f since this permits ready trans-
formation from one variable to the other.

SpECIAL CASES

The first application to be considered is that of the
structure of Fig. 1(a). Here we have shunt elements
consisting of inductive irises which have been tuned to
the midband frequency by means of the shunt capaci-
ties. When these resonant elements are spaced a quarter
wavelength apart, the present theory is certainly ap-
plicable over frequency bands of the order of 20 per cent
or less. This follows from the fact that the shunt sus-
ceptance of a resonant iris will certainly closely ap-
proximate, as a function of frequency, the shunt sus-
ceptance of a quarter-wave stub of suitable character-
istic admittance. Thus having calculated the stub ad-
mittance, one may then determine the corresponding
iris Q. Of course, the iris filter will not have the theoreti-
cal response near the frequency where the irises are a
half wavelength apart, but, for many applications, this
is of secondary importance.
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Y,=-ja cot6 ; Y,=-j2b cot8

()

Fig, 1—TFilter schematics,

To make the problem determinant the additional re-
quirement will be imposed that all of the quarter-wave-
length sections have the same characteristic impedance
as the generator and load (this is often a practical con-
dition). This restriction reduces the original problem of
Jones to one which is precisely determinant since the
number of unknowns now just equals the number of
defining equations. However, it is now no longer possible
to prove general physical realizability. Experience with
the solution of a number of cases indicates, nevertheless,
that the ideal response is realizable with the required
structure in all but the very broad-band extremes.

Let us now consider the determination of the shunt
susceptances of the three resonator problem of Fig.1(b).
We may think of this as three stubs of characteristic
admittance, a, 2b, and a, each spaced one quarter wave-
length apart on a uniform transmission line of unity
characteristic impedance. Our first problem is the de-
termination of Pz = Pavai1/Plead in terms of ¢ and b.

If v, 4, v, and ¢, are the output voltage and current of
a network and input voltage and current of the network,
respectively, then the 4 BCD or transfer matrix of the
network is the matrix of the coefficients of the equations,

v, = Av, + jBi,
i; = jCv + Di,,

giving the inputs in terms of the outputs. Now it is well
known that if the transfer matrix of one half of a sym-
metrical network is written in the form,

(e '»)
jc D)’
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the insertion loss P of the complete network, termi-
nated at both ends in unity impedances, is given by
1+ (BD — AC)%.. Thus we are concerned with
&§=BD—-AC.
To determine the transfer matrix of the bisected net-
work, we require the transfer matrices of the three ele-
ments of which it is composed. For a length of transmis-
sion line of unity characteristic impedance,
v; = cos fv, + 7 sin 01,
1; = 7 sin 6y, + cos 61,

while for the shunt stub of characteristic admittance a,
Vi = Vo

a cos f

U + 1o,

" J sin 6
where 6§ =7\,/2\, and N\, and X\, are the variable and
midband guide wavelengths, respectively.
Thus, the transfer matrix for the half of the network
on the right in Fig. 1(b) is obtained from the matrix
product,

1 0 c Js 0\
—jbe¢ . -—jac
s ¢ /
s s

where for brevity ¢=cos § and s=sin 8. Notice that the
square of the left-hand matrix above is just

1 0
—72b¢ ,
] 1

s

so that we have a true bisection of the network. When
this matrix product is evaluated, we obtain

c(1 4 a) gs
. b+ a+ ab)c?
][s—-s————j| c(1+0d)

Thus,
(b4 a+ ab)(e+ 1)c?

&(s,¢) = sc(b — a) +
s
Now since P is given most readily in terms of a function
of ¢ divided by +/1—¢2, we write &(s, ¢) =8(c)//1—¢?
=8&(c)/s. Then &(c)=(b+1)(a?+2a)c®—(a—0b)e. Thus
all possible responses of the network are expressible in
the form Pr=1482%(c)/s
The equal-ripple response which permits an exact
identification of coefficients has the form,

Equal-Ripple Functions 47

where % gives the tolerance on insertion loss and x, is
the maximum value of x where this tolerance is achieved.
If we then put x=¢, x.=py, V1 —x¥=s, T3(x)=4x3—3x
and Ti(x) =x, we require that

b+ 1)(a® 4+ 2a)c® — (a — b)c

M

-1 "

2s
Now equating the coefficients of ¢® and ¢, we find
ala + )b+ 1) = 281 + V1 — 2 /ud
a—b=h2+1— )/ u

A three-element filter was designed on this basis and its
input VSWR is compared with the theory in Fig. 2.

In the application of this theory to cascades of reso-
nant elements in which # is even, such as the familiar
four element TR tube, it should be observed that the
function which varies #+41 times between +1 over the
range —1<x<1,

(¢ + va2 = DT, (x) — (¢ — Va2 = DT s (a)
2\/a“ — x?

(4)

as derived in the Appendix, may be used to construct the
optimum, even, equal-ripple functions having a double
zero at zero. For this it is observed that the numerator
of (4) is even if # is even. Then if x, is the zero of this
function nearest to the origin, replacing x? above by
x'2+x,2, yields the desired optimum response function
since this transformation maps the values of x between
xp and 1 into the values of &’ between 0 and +/1—x,?
without altering the total number of zeros in the pass
band of «'.

Although no general procedure is known for the de-
termination of xq, an explicit formula can be derived

(2) when n=4.1f Z=a-+~a*—1, we have to solve
ZT(x) — Z71Te(x) = 0. (5)
But Ty(x)=2T5*x)—1 so that (5) becomes 2ZT,*(x)

—Zy(x)~Z=0or

1 —+/1+82°

Ta(ag) = cos 2 cos™lxy = SEa— 6)
1+ V1T =2 Ts(v/x) — (1 — V1T — 2 )T1(x/x)) 2
{0 FOT /) — LY “
241 — z?
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Fig. 2—Response of three-element filter,

The displacement of the zero also changes the range
of x over which equal-ripple performance is observed. In
discussing this aspect of the problem, it is convenient to
introduce

R.(y%) = ZT(y) — Z7 Tn2(y).

Then R,(x24x%)/2+/a*—x0>—x? has a double zero at
x=0 and varies between %1 over the range ++/1—x¢%
If we put x=+/a%?—x%’, then

R.[(a* — xe®)x'? + 20%]/24/ a2 — x?/1 — &2 (7)

has the desired form in the denominator and varies be-
tween +1 over the range

+ V1 —x?/va? — zo.

The limiting values +u of x"=cos # are then given by
w=/1—x0%/+/a*—x,% This is determined by the given
filter bandwidth. Our problem is the determination of
a and x,, but for given #, x, is a function of a. Hence u
is a function of a. Given u, a is first determined from this
functional relationship. Then x, is found from the func-
tion relating it to a. The required equal-ripple function
with a double zero at 0 is now provided by (7).

This procedure was used to determine the iris @'s for
a four element TR tube to operate with a VSWR <1.1
over the band from 8500 to 9600 Mc in WR90 wave-
guide. Fig. 3 compares the measured input standing
wave ratio with that which was calculated.

If the transmission line terminates in impedance sec-
tions rather than shunt resonant elements, the theory
is applicable to the design of broad-band stub supports
for coaxial line. The usual case is pictured in Fig.
4(a). It has been discussed by Pound!* and Muehe.’
The transfer matrix of the bisected cascade is given by

1 R. V. Pound, “Stub Supports in 7/8 in. Coaxial Line,” M.I.T.
Radiation Lab., Cambridge, Rept. No. 232; May 19, 1942.

Fig. 3—Response of four-element filter.
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For Y'=1, this is equivalent to the condition given by
Pound and, in general, is equivalent to (4) and (5) of
Muehe.5

The calculations for the symmetrical two stub case of
Fig. 4(b) are somewhat more complicated. The equa-
tions giving ¥, Z and Z; in terms of g and } are

Z  Zy A
222 27
vz ok
Y+ ; = —{ut =S4+ (4 -3Vl —
u
Z 1+1(Z 1>+ZY(Z+’)
T S Z
1 Z]_ 2 Z 1 1
vezezZ  YZ ok G — 5 — 3T, (0
5 Z 7 u?). (9)

From a practical point of view, the stub impedance ¥
cannot vary too greatly from unity. On the other hand,
the behavior of Py in the vicinity of its singularity at
¢=11is proportional in a general way to the total amount
of the shunt susceptance in the cascade. A consideration
of the form Py, will show that this susceptance must in-
crease rapidly with increasing #. How this affects the
broad-band performance of multiple stub support is
indicated in Fig. 5, where for two fixed values of Y the
available VSWR tolerance is plotted as a function of
the bandwidth of the stub support. A two-stub support
makes possible a lower VSWR for certain bandwidths
but for larger bandwidths a single stub is superior. For
example, over a one-octave band, corresponding to
cos #,=0.5, a two-stub arrangement in which the stubs
have the same characteristic impedance as the termi-
nating impedance has a maximum VSWR of 1.04 while
a single stub of the same impedance gives a maximum
VSWR of 1.1. On the other hand, over a two octave
band, corresponding to cos 8,=0.809, a single stub of
relative admittance 0.5 is superior to a double stub with
the same relative admittance.

The shortest compensated stub arrangement is that
shown in Fig. 4(c). Of course, it has the same response
as the single stub of Fig. 4(a). For it,

e+ = cos 8, + ising, =

(a+ V@@ — e+ (a — vat — 1) — 2
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Fig. 5—Comparison of stub responses.

Z—-=—2

(10)

For some applications, u and Y are given while Z and
h are required. If one writes a=(14+/1—p%)/u—1.
then

Z=((TA+a)Fat— V/(T+a).

APPENDIX

Chebyshev!? solved the problem of determining equal-
ripple rational functions having fixed singularities by a
method which is analytically equivalent to that proposed
later by Bernstein.’® Bernstein defined an angle 6 by
means of the equations

i Var = 11T = a2
sin § = 3
a—x

ax — 1
08§ = ——
a— X

where x = cos ¢. He argued then that as ¢ goes from zero
to 7 so does 0 and constructed the required equal-ripple
functions by evaluating expressions of the form
cos (mp+8;+8,+ - +) where the &'s are defined by
various a's.

Double-valued singularities may be included in this
procedure since, if

ei5+l2 —

(VaFI++a=1De? — (Va1 — a— e
2v/a — x

2(a — %) ()

(12)

1 8. Bernstein, “Lecons sur les properiétés extremals et la meileure
approximation des fonctions analytiques d’une variable reélle,”
Gauthier-Villars et Cie, Paris, France, pp. 1-12; 1926.
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Now to assure that all radicals have real positive
values, in the interval —1<x <1, it must be assumed
that ¢> 1. Then for singularities on the negative real
axis, we replace ¢ by —a and define

eit=12 =

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Wa+1++/a—1)e#?+ (Va+1—+/a—1)e?

Thus, in the factorization of the denominator of the de-
sired equal-ripple function, it is assumed that each fac-
tor is positive in the range —1<x<1. Now (12) is a
“primitive” function in terms of which the problem of
Chebyshev and our problem are readily solved.

We show that 8, and 6_ increase monotonically from
0 to = (except for 2K7) as ¢ increases from 0 to 7. In
the first place, both 8, and é_ are real for real ¢, since

l eis;tmlz —

[For future reference, notice that the second equality of
(14) does not require a to be real.| From (12) and (13},
when ¢=0, e?®+/2=1, while ¢¥*/*=4 when ¢==. Thus,

July
24/a + % (13)
(e++a —1)+ (a— \iﬁ) F2Ae® ) . (14)
2(a F z)
Thus
R {(a + Vet — 1)efts — (g — 1/g7 = 1)eint
¢ 2+/a? — x? }

within integral multiples of 2w, 6, varies from 0 to =
when ¢ does. Now sin (6+/2) = +/a F 1 sin (¢/2)
/vVaTF cos ¢, so that sin (8:/2) is positive whenever
sin (¢/2) is, since @ > 1. Thus §; increases monotonically
from 2Kr to (2K +1)7 whenever ¢ goes from 0 to .
Now consider
by + o

cos <nq§ + — ) = Re [eims+Getioml - (15)

Clearly, except for multiples of 27,

o + 6o
n¢+—+—2——

is the desired equal-ripple function. But Re (e™%)
=T,(x) so that

(@ + va? — DTaa(x) — (0 — @@ — 1) To(x)
2v/a? — #?

is the required equal-ripple function of degree n+2.

The arguments given above are no longer valid if ¢ is
complex. There is some interest, however, in the case of
singularities which occur in complex pairs.?617 In the
interest of completeness this situation will now be dis-
cussed. Define & by

eiﬁ

e =

_Wat1l++vVa—-1)e?? - (Va+1—+a—1)er

24/a — % (16)
with ¢ =a+18 and 8520, and define § by
(Va* + 14+ a* — 1)e2 — (Va* £ 1 — /a* — 1)ei/ an

2v/a* — «x

increases from 0 to (z+1)m as ¢ goes from 0 to 7w and
so (15) has the desired equal-ripple performance.
From (12) and (13),

(@ + va* — 1)ei* — (a — +/a® — 1)ei®
2+/a% — x? .

gi((B+H8-372) =

where a* is the complex conjugate of a. Now §+§ varies
from 0 to 7 (except for multiples of 27) as ¢ does, so
that ¢#®+9 can be used to construct equal-ripple func-
tions after the manner already indicated.

s C. B. Sharpe, “A general Chebyshev rational function,” Proc,
IRE, vol. 42, pp. 454-457; February, 1953.

¥ D. Helman, “Synthesis of electric filters with arbitrary phase
characteristics,” IRE TRANS. ON CiRcurtT THEORY (Correspondence),
vol. CT-2, pp. 217-218; June, 1955,
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To demonstrate this, first notice that |ei®+9|=1.
This follows from the fact that

ei(5+5_).[ei(6+5)]* — [6ia{ei3}*],[€¢5{eia}*]’

and each of these factors has the form of the middle term
of (13), where a is not required to be real for the second
equality to hold.

Now ¢i® can be expressed with real coefficients as

gi (o)
(VP =1De® = 2afr 4+ (r — /1= 1)
2422 — 2ax + a? + B2

,(18)

where 7 is defined as the semi-major axis of the ellipse
passing through (e, 8) with foci at 4 1.8 The quantities

18 For the transformations involved see Bernstein,!
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under the radical signs are all positive so that (18) is
well defined and valid for all @ if 35#0. If 3=0and a>1
then (17) reduces to (11) and if <1, (17) reduces to
the square of (13). Finally

V72— 1sin ¢
2/5% — 2ax 4 o? 4 52
so that 643 goes from 0 to 7 as ¢ does since sin (§+5)

is positive everywhere in between, regardless of the
sign of a.

sin (8 + 8) =
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A Broad Tunable Bandwidth Traveling-Wave Maser

L. C. MORRIS, MEMBER, IEEE, AND D. J. MILLER, MEMBER, IEEE

Summary-——A new type of traveling-wave maser (TWM) has
been developed, employing the meander line as the slow-wave
circuit and rutile as the active maser crystal. This amplifier has
achieved net gains in excess of 23 db across the band from 2.0 to
3.0 Gc, with an over-all noise temperature of 8° +2°K. This marks
the first time that rutile with a dielectric constant of 220 has been
coupled to a slow-wave circuit. The maser material exhibited in-
version ratios of 10:1 and saturated at an input signal of —47 dbm.
In addition to the maser work, a ferrite material investigation was
conducted, which led to the development of a gadolinium substituted
yttrium iron garnet (YIG) as the ferrite isolator. Various concentra-
tions of the gadolinium in YIG were investigated as ferrite isolators
at 4.2°K and were found to have lower forward losses than pure YIG
at S band.

INTRODUCTION

HE THEORY and advantages of the traveling-
Twave maser over the cavity maser has been well

established and given in the literature [1], [2].
Various slow-wave structures, such as the comb struc-
ture [1], Karp structure [3], meander line [4]-[6] and
the dielectrically loaded waveguides [7], have been used
to obtain the low group velocities necessary for travel-
ing-wave maser action. This paper specifically describes
the design of an S-band rutile loaded meander line. The
energy levels and crystal axis orientations of rutile are

Manuscript received November 4, 1963; revised March 16, 1964.
The authors are with the Radio Corporation of America,
Camden, N. J.

discussed since this is the first time this material has
been used at such low frequencies.

The initial desire for a large tunable bandwidth elim-
inated structures such as the comb and Karp because
of their highly resonant, narrow bandwidth character-
istics. A slow-wave structure which exhibited wide dis-
persion characteristics, relatively low impedance varia-
tions as a function of frequency and low insertion losses
was needed. Investigations showed the meander line to
possess these characteristics.

Rutile was selected as the active paramagnetic mate-
rial because of its very high inversion ratio. high dielec-
tric constant, high signal power saturation levels and
the ability to obtain large single crystals with accurate
crystal axis alignment.

CHARACTERISTICS OF RUTILE [8]

Ruby has been generally used as the active material
in TWM'’s. For this application, certain improved char-
acteristics were desired, and rutile was considered as
superior to ruby for TWM design. The pertinent char-
acteristics of these two materials are compared in Table
I. Note the advantages of rutile’s lower Q,, and higher
dielectric constant. Also, the zero field splitting for
rutile is large, which contributes to a higher inversion
ratio. In addition rutile saturates at a relatively high
input level. Rutile was selected for these advantages,



