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Summary—Chevyshev’s procedure for determining equal-ripple

rational functions with preassigned poles is extended to functions

with double-valued singularities. As long as the number of elements

is small, design equations for the class of transmission-line filters

consisting of shunt-resonant elements spaced a quarter wavelength

apart are readily obtained by identifying the unknown coefficients

with those of the desired equal-ripple function. This is carried out

in some detail for three and four element filters and applied to the

design of broad-band stub supports and quarter-wave-spaced broad-

band TR tubes. Experimental confirmation is presented.

INTRODUCTION

T

HE GENERAL SYNTHES [S of transmission-

! line filters consisting of short-circuited, quarter.

wave stubs spaced a quarter-wavelength apart on

sections of transmission line, each of undetermined char-

acteristic impedance, has been considered by Jones. 1 He

has shown that the insertion loss function PL of a sym-

metrical filter of this type wili take the form PL = 1

+Q.+12(co)/(1 +cF)n, where Q.+1 is an even or odd Poly-

nomial of degree tZ+ 1 in u with real coefficients and n is

the number of quarter-wavelength sections of transmis-

sion line. He also pointed out how equal-ripple perform-

ance can be achieved for arbitrary bandwidth and toler-

ance by means of an ingenious potential analogy used by

Grinich2 and Bennett8 for this purpose. This transforma-

tion is rather involved with the result that Jones limited

has calculations of the coefficients of Qn+l(co) to a single

bandwidth.

The general case treated by Jones is of considerable

interest because it includes the problem of the design of

optimum broad-band stubs,4,5 broad-band T R tubes~

and some specialized filters.’-g
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THE PROBLEM AND SOLUTION

Now co= – cot fl, where @ is the common electrical

length of the stubs and line lengths in the filter under

consideration, i.e., @= 2rl/~o. If one uses x = — cos 0 for

a frequency variable instead of co, it is readily shown by

means of the substitution, W2 = cotz O= COS26/(1 – COS219)

= X2(1 – X2) that PL = 1 + Pm+12(z)/(1 – X2), where

P.+l (x) is an even or odd polynomial in x of degree n+ 1

with real coefficients.

Thus the problem of designing for equal-ripple per-

formance reduces to finding even and odld polynomials

p.(x) so that l?.(x)/ <l – X2 oscillates between ~ 1

exactly n + 1 times in a prescribed interval -– 1< — .x,

?X<xc<l.

In general, this problem may be solved either by use

of the transformation employed by ~kinich2 and Ben-

nett3 or by adding that constant to the appropriate

rational Chebyshev functionl” which converts it into a

perfect square. Both of these procedures determine

P,,(x) by first determining FIn2(X). As is, shown in the

Appendix, the “primitive” equal-ripple rational func-

tions employed by Chebyshev in the solution of his

problem may be expressed in terms of more primitive,

irrational functions. These are used to solve the problem

directly. Finally P,,(x)” is given then by

2P.(Z) = (1 + <1 – 2.’) Tn(x/&)

– (1 – <1 – %2) Tn_,(x//&), (1)

where T.(x) is the familiar Chebyshev polynomial of

nth degree.

Although a general proof is given in the flppendix,

the reader may wish to verify that Pn (x)/ t~l – X2 equals

+1 when x = xc equals + 1 for x = – x, and equals O or

~ 1 for x = O, depending on the precise value of n.

This solution of the approximation problem in closed

form permits the exact determination o,f the optimum

performance available from this cl&s of trarLsmission-

—..——
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line filter and so permits the filter designer to select with-

out approximation the number of filter elements re-

quired to achieve a specified selectivity for a given pass-

band width and tolerance. It also allows the direct de-

termination of the design parameters of a number of

useful microwave devices by the method of undeter-

mined coefficients if the number of unknowns is small.

Of course, in the general case, the synthesis procedure

of Jonesl is available.

Using the frequency variable x instead of co not only

simplifies the problem but also simplifies the solution.

In terms of co, (1) would involve all the Chebyshev poly-

nomials of the form Tn_z~ (u). That the denominator of

PL, expressed in terms of x, is independent of the num-

ber of filter sections is associated with the fact that only

one stub is required to make the problem determinant.

Additional stubs result in more unknown impedances

than the number of independent coefficients in PL.

Nforeover, if Pn+l(x) is divisible by X2 – 1, then no shunt

elements are required in the realization. 12 This situation

illustrates the fact that the approximation problem is

most readily discussed in terms of x.

On the other hand, the frequency variable ~ is very

useful for synthesis realizability considerations. Because

of the multivalued relationship between w and x, x can-

not be used conveniently as the frequency variable in

a synthesis procedure based on positive realness in the

sense of Brune. 13 For this reason the writer prefers to

carry the analysis of a given problem through in terms

of both cos 6’ and sin O since this permits ready trans-

formation from one variable to the other.

SPECIAL CASES

The first application to be considered is that of the

structure of Fig. 1(a). Here we have shunt elements

consisting of inductive irises which have been tuned to

the midband frequency by means of the shunt capaci-

ties. IVhen these resonant elements are spaced a quarter

wavelength apart, the present theory is certainly ap-

plicable over frequency bands of the order of 20 per cent

or less. This follows from the fact that the shunt sus-

ceptance of a resonant iris will certainly closely ap-

proximate, as a function of frequency, the shunt sus-

ceptance of a quarter-wave stub of suitable character-

istic admittance. Thus having calculated the stub ad-

mittance, one may then determine the corresponding

iris Q. Of course, the iris filter will not have the theoreti-

cal response near the frequency where the irises are a

half wavelength apart, but, for many applications, this

is of secondary importance.

‘z H. J. Riblet, “General synthesis of quarter-wave impedance
transformers, ” IRE TRAM. ON MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-5, pp. 36–43; January, 1957.

130. Ilrune, ‘[Synthesis of a finite two-terminal network whose
dri~,ing point impedance is a prescribed function of frequency, ”
J. Mat?z. and Phys., vol. 10, pp. 191–236; October, 1931.

y=-ja cottl ; Y2=-j2b cot8
(b)

Fig. l—Filter schematics.

To make the problem determinant the additional re-

quirement will be imposed that all of the quarter-wave-

length sections have the same characteristic impedance

as the generator and load (this is often a practical con-

dition). This restriction reduces the original problem of

Jones to one which is precisely determinant since the

number of unknowns now just equals the number of

defining equations. However, it is now no longer possible

to prove general physical realizability. Experience with

the solution of a number of cases indicates, nevertheless,

that the ideal response is realizable with the required

structure in all but the very broad-band extremes.

Let us now consider the determination of the shunt

susceptances of the three resonator problem of Fig. 1 (b).

We may think of this as three stubs of characteristic

admittance, a, 2b, and a, each spaced one quarter wave-

length apart on a uniform transmission line of unity

characteristic impedance. Our first problem is the de-

termination of P.= Pav.il/PIO.d in terms of a and b.

If VO,io, ZJ,and i, are the output voltage and current of

a network and input voltage and current of the network,

respectively, then the A B CD or transfer matrix of the

network is the matrix of the coefficients of the equations,

giving the inputs in terms of the outputs. Now it is well

known that if the transfer matrix of one half of a sym-

metrical network is written in the form,

A jB

() jCD’
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the insertion loss PL of the complete network, termi-

nated at both ends in unity impedances, is given by

1 + (i?~ – AC) 2. Thus we are concerned with

c= BD– AC.

To determine the transfer matrix of the bisected net-

work, we require the transfer matrices of the three ele-

ments of which it is composed. For a length of transmis-

sion line of unity characteristic impedance,

vi = cos e~lo+ j sin OiO

i; = j sin OVO+ cos tliO,

while for the shunt stub of characteristic admittance a,

acosi3 .
‘iZ= —j— ~~o+ ‘b,

sin O

where 6 = 7rXQ/2h~ and ~~ and Xg are the variable and

midband guide wavelengths, respectively.

Thus, the transfer matrix for the half of the network

on the right in Fig. 1(b) is obtained from the matrix

product,

where for brevity c = cos 8 and s = sin O. Notice that the

square of the left-hand matrix above is just

10

()

–j2bc
1’

s

so that we have a true bisection of the network. when

this matrix product is evaluated, we obtain

/
c(1 + a)

([js– ‘b+a:ayl‘(’+b))”
Thus,

(b+ a + ab)(a + 1)c3
8(.s, c) = sc(b – a) + — . (2)

s

Now since PL is given most readily in terms of a function

of c divided by ~1 —cz, we write 8(s, c) =&(c)/~1 —cz

=&(c) /s. Then &(c) = (b+l)(a~+2a)c3– (a–b)c. Thus

all possible responses of the network are expressible in

the form PL= 1 +&z(c)/sz.

The equal-ripple response which permits an exact

identification of coefficients has the form,
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where h gives the tolerance on insertion loss and x, is

the maximum value of x where this tolerance is achieved.

If we then put X=C, x.=v, VI –x’=s, Ta(x) =4x3-3x

and Tl(.v) =x, we require that

(b+ 1)(.’ + 2a)c3 – (a – b)c

s

(l+dl–p’) (4~–3:)(–(1–@-@–

= k ———
f13 P K

2s

Now equating the coefficients of Cg and c, we find

.(. + 2)(b + 1) = 211(1 + {1 -- pz)/p3

a — b = k(2 + {1 — p2),’K.

A three-element filter was designed on this basis and its

input VSWR is compared with the theory in Fig. 2.

In the application of this theory to cascades of reso-

nant elements in which n is even, such a!; the familiar

four element TR tube, it should be observed that the

function which varies n+ 1 times between ~ 1 over the

range —l<x~l,

(a+ <.’ – I) T.(.x) – (a – ~az – l) T.-,(*)

2~a’ – x’
—--––- , (4)

as derived in the Appendix, may be used to construct the

optimum, even, equal-ripple functions having a double

zero at zero. For this it is observed that the numerator

of (4) is even if n is even. Then if XO is the zero of this

function nearest to the origin, replacing x’ above by

#2+XOZ, yields the desired optimum response function

since this transforrnation maps the values, of x between

XO and 1 into the values of x’ between O and <l —X02

without altering the total number of zeros in the pass

band of x’.

Although no general procedure is known for the de-

termination of xO, an explicit formula can be derived

when n=4. If Z =a+v’a~— 1, we have to solve

ZT,(”V)– Z-1T2(.Y)= o. (5)

But Tl(x) = 2 Tz’(x) – 1 so that (5) becomes 2ZTZ2(X)

–Z–lTZ(X) –2=0 or

1 – U1 +- 82’
T2(30) == Cos 2 COS–1.YO= ——–~;;——- . (6)

J

{

(1+ <1 – xc’) T:,(.E/xc) – (1 – <1 – xc’) T,(.r/.vc) ‘
PL =1+112

-) )
(3)

241 – X2
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FREQ.(KMC)

Fig. 2—Response of three-element filter,

The displacement of the zero also changes the range

of x over which equal-ripple performance is observed. In

discussing this aspect of the problem, it is convenient to

introduce

R.(y’) = zTn(y) – z- ITn_2(y) .

Then R.(xz+x02)/2 ~az – X02 –x’ has a double zero at

x = O and varies between f 1 over the range f til — XOZ.

If we put x= ~aZ–xo2x’, then

R. [(a2 – X02)X’2 + x02]/2<az – X02{1 – Z’Z (7)

has the desired form in the denominator and varies be-

tween t 1 over the range

The limiting values +P of X’= cos O are then given by

p = <l —xox/~a2 —xo%. This is determined by the given

filter bandwidth. Our problem is the determination of

a and xO, but for given n, xo is a function of a. Hence p

is a function of a. Given p, a is first determined from this

functional relationship. Then XO is found from the func-

tion relating it to a. The required equal-ripple function

with a double zero at O is now provided by (7).

This procedure was used to determine the iris Q’s for

a four element TR tube to operate with a VSWR <1.1

over the band from 8500 to 9600 Nfc in WR90 wave-

guide. Fig. 3 compares the measured input standing

wave ratio with that which was calculated.

If the transmission line terminates in impedance sec-

tions rather than shunt resonant elements, the theory

is applicable to the design of broad-band stub supports

for coaxial line. The usual case is pictured in Fig.

4(a). It has been discussed by Pound14 and Muehe.5

The transfer matrix of the bisected cascade is given by

IJ R. V, pound, ‘(stub Supports in 7/8 in. Coaxial Line, ” M. I.T.

Radiation Lab., Cambridge, Rept. No. 232; May 19, 1942.

FREQ.(KMC)

Fig. 3—Response of four-element filter.

Sz!l!2&—
L+-1

(a)

L----
(c)

Fig. 4—Stub schematics.

For equal-ripple performance over the range i K with a

maximum variation in PL of h2, we find that

—.; Z2 + + – z = L’(2 + <r– p2)/w. (8)



T964 Riblet: New Class of Equal-Ripple Functions 419

For Y= 1, this is equivalent to the condition given by

Pound” and, in general, is equivalent to (4) and (5) of

lMuehe.5

The calculations for the symmetrical two stub case of

Fig. 4(b) are somewhat more complicated. The equa-

tions giving Y, Z and Z1 in terms of p and lZ are

z Z12
—-=)’2

2Z12 – 2Z

From a practical point of view, the stub impedance Y

cannot vary too greatly from unity. On the other hand,

the behavior of PL in the vicinity of its singularity at
~ = 1 is proportional in a general way to the total amount

of the shunt susceptance in the cascade. A consideration

of the form PL will show that this susceptance must in-

crease rapidly with increasing n. How this affects the

broad-band performance of multiple stub support is

indicated in Fig. 5, where for two fixed values of Y the

available VSWR tolerance is plotted as a function of

the bandwidth of the stub support. A two-stub support

makes possible a lower VSWR for certain bandwidths

but for larger bandwidths a single stub is superior. For

example, over a one-octave band, corresponding to

cos 19.= 0.5, a two-stub arrangement in which the stubs

have the same characteristic impedance as the termi-

nating impedance has a maximum VSWR of 1.04 while

a single stub of the same impedance gives a maximum

VSWR of 1.1. On the other hand, over a two octave

band, correspcmding to cos O.= 0.809, a single stub of

relative admittance 0.5 is superior to a double stub with

the same relative admittance.

The shortest compensated stub arrangement is that

shown in Fig. 4(c). Of course, it has the same response

as the single stub of Fig. 4(a). For it,

I
I ‘l—T__

,>:-;

33-3-:”:; ,y55
---- DOUBLE STUB

Y= ADMITTANCE OF STUB ~
/’

__ ,,+. _

FP

~——
,’J

__yl : ;!— —
/’

+

~ I –J7-’ ~ –.
A. =.

,.- /
---- .-’

. ..---._ . . ..---r

.3 .4 .5 .6 .7’ .8 .9
cos ec

Fig. 5—Comparison of stub respcmses.

Z–; =–2h

—.—

(

I+dl–p’

)
zY’+2Y=2k — —–.1 .

I.lz

For some applications, p and Y are given while

(lo)

Z and

h are requ~r~d. If one writes a= (1 + ti’1 –~~)/p – 1.

then

Z = (~Y2(l + a) + a’ – I“),/(I” + a).

APPENDIX

Chebyshev12 solved the problem of determining equal-

ripple rational functions having fixed singularities by a

method which is analytically equivalent to that proposed

later by Bernstein.’5 Bernstein defined an angle ~ by

means of the equations

ax — 1
sins = da’ – 1{1 _ ~,Cos 8 = —— ;

——— 9
a—x ,a –- x

where x = cos d. He argued then that as @ goes from zero

to m so-does ti and constructed the required equal-ripple

functions by evaluating expressions (of the form

Cos (?20+81+82+ “ “ . ) where the iYs are defined by

various a’s.

Double-valued singularities may be included in this

procedure since, if

(a+ <a’ – l)ei’$ + (a – -/a’ –Z)e-’@ – 2
eia~ = cos 8+ + i sin 8+. = > (11)

2(a – x)

——
ei,+,, ~ (~a + 1 + ~a – l)e’’$j’ – (~a + 1 – ~a – l)e-i~/2

——
2~a – x

(12)

15 s. ~~~n~t~in, ‘[Le$ons sur Ies properi+t+s externals et la meileure
approximation des fonctions analytiques d ‘une variable redlle, ”
Ganthier-Villars et Cie, Paris, France, pp. 1-12; 1926.
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Now to assure that all radicals have real positive

values, in the interval — 1 <x S 1, it must be assumed

that a >1. Then for singularities on the negative real

axis, we replace a by — a and define

(13)

Thus, in the factorization of the denominator of the de-

sired equal-ripple function, it is assumed that each fac-

tor is positive in the range – 1 SX S 1. Now (12) is a

“primitive >) function in terms of which the problem of

Chebyshev and our problem are readily solved.

We show that 8+ and 6- increase monotonically from

O to m (except for 2K7r) as @ increases from O to T. In

the first place, both d+ and ii– are real for real q5, since

I@*’212=
(a+ <a’ – 1) + (a – ~a’ – 1) T 2(e’d + e-’+) ~

=.
2(a ~ x)

(14)

[For future reference, notice that the second equality of Thus

(14) does not require a to be real. ] From (12) and (13),

when q5=0, eiB*12= 1, while e’~~l’=i when g$=7r. Thus,
~e (a+ ~az - l)e~t~+~)’$ -(a - ~aa - ~)ei.~

within integral multiples of 27r, 8* varies from O to 7r { 2~a2 – x’ }

when @ does. Now sin (6~/2) = /a T 1 sin (q$/2)
is the desired equal-ripple function. But Re (e~”~)

/~a T cos ~, so that sin (8f/2) is pOsitiVe whenever = ~ (x) so that

sin (@/2) is, since a >1. Thus 8* increases monotonically “

from 2K7r to (2K+ l)r whenever @ goes from O to r. (a+ <a’ – l) T.+2(.x) – (a – ~a2 – l) TZ(X)
.—

Now consider
2~a2 – X2

( 6+ + (L
cos n+ + ) Re [ ei(f@+(6++8-)/2)

2=
}. (IS) is the required equal-ripple function of degree 72+2.

The arguments given above are no longer valid if a is

Clearly, except for multiples of 2r,
complex. There is some interest, however, in the case of

singularities which occur in complex pairs.~,lc,lT In the
8+ + a-

?@ +
interest of completeness this situation will now be dis-

2 cussed. Define 8 by

with a =ei+i~ and ~#0, and define $ by

(16)

(17)

increases from O to (n+ l)r as @ goes from O to m and where a* is the complex conjugate of a. Now 6 + ~ varies

so (15) has the desired equal-ripple performance. from O to T (except for multiples of 2T) as @ does, so

From (12) and (13), that e@+lJ can be used to construct equal-ripple func-

tions after the manner already indicated.

16C, B. Sharpe, “.4 general Chebyshev rational function, ” PROC.

ei((6++,_),,) = (a + <a2 – l)ei$ – (a – da’ – l)e-’+
IRE, vol. 42, pp. 454-457; February, 1953.

17 D. Helman, “Synthesis of electric filters with arbitrary phase
—— characteristics, ”

2~a2 – X2
IRE TRANS. ON CIRCUIT THEORY ( Corres@sdence),

vol. CT-2, pp. 217–218; June, 1955,
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To demonstrate this, first notice that I eit$+:) \ =1.

This follows from the fact that

ei(h+[) . [ei(b+i)]* = [ei~~~~~} *] . [e~~~@~}*],

and each of these factors has the form of the middle term

of (13), where a is not required to be real for the second

equality to hold.

Now ei@+~) can be expressed with real coefficients as

ei(a+s)

(r + ~r’ – I)ei@ – 2a/r + (r – ~rz – l)e–i~
.

2 4X2 –2ax+a2+&
J (18)

where Y is defined as the semi-major axis of the ellipse

passing through (a, ~) with foci at ~ 1.18 The quantities

M For the transformations involved see Bernstein.ls

under the radical signs are all positive SC) that (18) is

well defined and valid for all a if @#O. If (?== O and a >1

then (17) reduces to (11) and if a <1, (17) reduces to

the square of (13). Finally

~r’ – 1 sin r#J
sin (6 + j) =

24X2 – 2aX + a2 +82

so that 6+3 goes from O to ir as @ does since sin (6 +~)

is positive everywhere in between, regardless of the

sign of a.
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A Broad Tunable Bandwidth Traveling~Wave ISIaser

L. C. MORRIS, MEMBER, IEEE, AND D. J. MILLER, MEMBER, IEEE

Summary-A new type of traveling-wave maser (TWM) has
been developed, employing the meander line as the slow-wave
circuit and rutile as the active maser crystal. This amplifier has
achieved net gains in excess of 23 db across the band from 2.o to
3.o Gc, with an over-all noise temperature of 8° f 2°K. This marks

the first time that rutile with a dielectric constant of 22o has been

coupled to a slow-wave circuit. The maser material efilbited in-
version ratios of 10:1 and saturated at an input signal of —47 dbm.

In addition to the maser work, a ferrite material investigation was

conducted, which led to the development of a gadolinium substituted

yttrium iron garnet (YIG) as the ferrite isolator. Various concentra-

tions of the gadolinium in YIG were investigated as ferrite isolators

at 4.2°K and were found to have lower forward losses than pure YIG
at S band.

INTRODUCTION

T

HE THEORY and advantages of the traveling-

wave maser over the cavity maser has been well

established and given in the literature [1], [2].

Various slow-wave structures, such as the comb struc-

ture [1], Karp structure [3], meander line [4 ]– [6 ] and

the dielectrically loaded waveguides [7], have been used

to obtain the low group velocities necessary for travel-

ing-wave maser action. This paper specifically describes

the design of an S-band rutile loaded meander line. The

energy levels and crystal axis orientations of rutile are

Manuscript received November 4, 1963; revised March 16, 1964.
The authors are with the Radio Corporation of America,

Camden, N. J.

discussed since this is the first time

been used at such low frequencies.

this material has

The initial desire for a large tunable bandwidth elim-

inated structures such as the comb and Karp because

of their highly resonant, narrow bandwid t’h character-

istics. A slow-wave structure which exhibited wide dis-

persion characteristics, relatively low impedance varia-

tions as a function of frequency and low insertion losses

was needed. Investigations showed the meander line to

possess these characteristics.

Rutile was selected as the active paramagnetic mate-

rial because of its very high inversion ratio,, high dielec-

tric constant, high signal power saturation levels and

the ability to obtain large single crystals with accurate

crystal axis alignment.

CHARACTERISTICS OF RUTILE 1[8]

Ruby has been generally used as the active material

in TWM ‘s. For this application, certain improved char-

acteristics were desired, and rutile was considered as

superior to ruby for TWM design. The pertinent char-

acteristics of these two materials are compa~red in Table

1. Note the advantages of rutile’s lower Q,. and higher

dielectric constant. Also, the zero field splitting for

rutile is large, which contributes to a higher inversion

ratio. In addition rutile saturates at a relatively high

input level. Rutile was selected for these advantages,


